
  

www.maqao.org 

Code Quality Analyzer (CQA) 

CQA for IA32, x86-64 and AArch64 architectures 

Version 2.2 

November 2024 



1 MAQAO Tutorial series: Code Quality Analyzer  

1 Introduction 
 

MAQAO-CQA (MAQAO Code Quality Analyzer) is the MAQAO module 
addressing the code quality issues. Based on a detailed performance model, 
MAQAO-CQA (i) returns a lower bound on the number of cycles needed to run 
a binary code fragment, (ii) estimates performance gain if resources were 
optimally used. It processes the binary code statically, hence the binary code 
does not have to be run to be analyzed. And it assumes that most of execution 
time is spent in loops.  

MAQAO-CQA compares a binary code against a given machine model and 
determines the location of the performance bottlenecks. In order to do so, 
some assumptions are made such as infinite loop trip count and the absence 
of dynamic hazards such as denormalized numbers and so on. This tutorial 
deals with the command line version of MAQAO-CQA. 

 

  



2 MAQAO Tutorial series: Code Quality Analyzer  

2 Analyzing performance 
 

2.1 Compilation 
 
For a better experience, please compile with -g. Remark: with Intel compilers, -
g implies -O0 (no optimization) and requires you to explicit your optimization 
level (default is O2). To analyze loops in the “my_div” function defined in 
my_div.c, MAQAO can use either the div.o object file or the whole application 
executable. Analysis will be faster with the object file. Instead of specifying 
functions, you can directly analyze binary loops by their MAQAO identifier 
(displayed by the MAQAO profiler). 

2.2 Running MAQAO-CQA on loops 
 

 

 

 

 

 

 

 

 

 

 
 

The module can be invoked either by specifying a function to analyze (all the 
innermost loops) or directly a set of loops (MAQAO loop ids). 

 

The output report is printed on the standard output. 

 

N.B.:If you want to analyze performance of a code for a machine with the 
same micro-architecture as the machine you are running MAQAO and if this 
micro-architecture is supported, you can omit to specify the micro-architecture. 

To list all options or available micro-architectures: 

 

maqao cqa <BINARY_FILE> loop=<LOOP_ID> uarch=<MICRO-ARCHITECTURE> 

Identifier of loops to analyze (comma-

separated). Ex: 17,458 
 

maqao cqa <BINARY_FILE> fct-loops=<FUNCTION> uarch=<MICRO-ARCHITECTURE> 

Name of the binary file to 
analyze (or path if not present 
in the current directory) 

Name of functions to analyze. You 
can give a list of regexps: 
foo,^bar$ will match foo29, 
my_foo and bar but not my_bar. 

maqao cqa –help or man maqao-cqa 

Most recent supported micro-architectures (non 

exhaustive list, CF maqao --list-procs): 

  - Intel: Sierra Forest and Granite Rapids 

  - AMD: Zen 5 

  - ARM: Neoverse V2 (AWS Graviton 4 and NVidia 

Grace) 



3 MAQAO Tutorial series: Code Quality Analyzer  

2.3 Running MAQAO-CQA on advanced targets 
To analyze, in a given function, the code that is outside loops (and, by extension, functions not 

containing loops), use fct-body instead of fct-loops. 

 

 

To analyze a specific code path (ordered sequence of basic blocks), use path=<comma-separated 

list of basic block IDs> instead of fct-loops. 

 

One way to get basic blocks ID is to run (B30 = block ID):  

 

 

Remark: to analyze a asm/object file containing a single basic block (typically a micro-benchmark 

kernel), use path=0 

2.4 Confidence levels 
CQA filters information by “confidence levels”: 

• Gain: following CQA reports will result into speedup 

• Potential: good chance to gain 

• Hint: not sure but worth be tried 

• Expert: mostly for advanced users: assembly code… 

By default, only “gain” and “potential” reports are printed. 

To add “hint” reports use: 

 

And for all of them: 

 

 

  

maqao cqa (...) --confidence-levels=gain,potential,hint  

maqao cqa (...) --confidence-levels=all  

maqao cqa <BINARY_FILE> fct-body=<FUNCTION> … 

maqao cqa <BINARY_FILE> path=48,49,52 … 

maqao analyze -li <BINARY_FILE> fct=<FUNCTION> 
 0x402b40[B30]: PUSH %R12 
 0x402b40[B30]: PUSH %R12 



4 MAQAO Tutorial series: Code Quality Analyzer  

2.5 HTML report 
HTML output can be generated (and displayed in any web browser) with: 

 

 

Reports from all confidence levels can be displayed.  

 

 

 

maqao cqa (...) --output-format=html --output-path=foo 
<my_web_browser> foo/index.html  



5 MAQAO Tutorial series: Code Quality Analyzer  

2.6 Understanding the output report 

2.6.1  Example 
 
Figure 1 shows a simple code example performing a division. 

 

 

 

 
 

 

 

Figure 1 

 

The code is then compiled as follows: 
 

 

We perform the analysis targeting the my_div function and store the output 
report in the out.txt file. 

:  
 

 

2.6.2  Interpreting the output 
 

Figure 2 present the output report’s header which provides a summary of an 
analyzed (innermost) loop. In our example there is only one innermost loop 
(which performs the division). 

 

The report is presented hierarchically: 

• Function (contains source or binary loops)  

• Source loop (contains binary loops)  

• Binary loop (contains paths)  

• Path (if at least two execution paths) 

 
 

 

/tmp/my_div.c: 
 1  
 2   int i; 
 3  
 4   for (i=0; i<n; i++) 
 5     c[i] = a[i] / b[i]; 
 6 } 
 7 
 8 int main (int argc, char *argv[]) { 
 9 ... 
 

gcc -g -O3 my_div.c -o my_div 

maqao cqa my_div fct-loops=my_div uarch=NEHALEM > out.txt 



6 MAQAO Tutorial series: Code Quality Analyzer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 
You can check that your code is vectorized by reviewing the corresponding 
section of the report: 

 

 

 

Figure 3 

 
And review cycles and resources usage: 
 

 

 

 

 

 

 

Figure 4 

out.txt: 
 Section 1: Function: my_div 
 =========================== 
 
Code for this function has been compiled to run on any x86_64 
processor (SSE2, 2004). It is not optimized for later processors 
(AVX etc.). 
These loops are supposed to be defined in: /tmp/my_div.c 
 
 Section 1.1: Source loop ending at line 5 
 ========================================= 
  
 Composition and unrolling 
 ------------------------- 
 It is composed of the following loops [ID (first-last source 
line)]: 
  - 0 (1-5) 
  - 1 (5-5) 
 and is unrolled by 4 (including vectorization). 
  
 The following loops are considered as: 
  - unrolled and/or vectorized: 1 
  - peel or tail: 0 
 The analysis will be displayed for the unrolled and/or vectorized 
loops: 1 
  
 (report for the loop 1) 
 

Vectorization  
-------------  
Your loop is fully vectorized, using full register length. 
 

Cycles and resources usage  
--------------------------  
Assuming all data fit into the L1 cache, each iteration of the 
binary loop takes 14.00 cycles. At this rate:  
- 0% of peak computational performance is reached (0.07 out of 
8.00 FLOP per cycle (GFLOPS @ 1GHz))  
- 3% of peak load performance is reached (0.57 out of 16.00 bytes 
loaded per cycle (GB/s @ 1GHz))  
- 1% of peak store performance is reached (0.29 out of 16.00 bytes 
stored per cycle (GB/s @ 1GHz)) 
 



7 MAQAO Tutorial series: Code Quality Analyzer  

To optimize your code (or check if already “statically optimal”), review the 
“pathological cases” section (and then, “bottlenecks”). For some of reported 
items, you can found answers to three critical questions: 

• what is the problem? 

• how much you can gain if you solve it? 

• how you can solve it? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 

Vectorization 
-------------  
Your loop is not vectorized.  
 
By vectorizing your loop, you 
can lower the cost of an 
iteration from 14.00 to 3.50 
cycles (4.00x speedup).  
 
Workaround(s): 
- Try another compiler or 
update/tune your current one:  
* GNU: use O3 or Ofast. If 
targeting IA-32, add mfpmath=sse 
combined with march=<cpu-type>, 
msse or msse2.  
- Remove inter-iterations 
dependences from your loop and 
make it unit-stride.  
 

 
 
<= What is the problem? 
 
 
<= How much you can gain if you 
solve it? 
 
 
 
 
 
 
 
<= How can you solve it (here, 
two propositions)? 
 

 
 
 
 
<= What is the problem? 
 
 
<= How much you can gain if you 
solve all the listed 
bottlenecks? 
 
 
 
 
<= How can you solve it (here, 
two propositions)? 
 
 
 
 

Bottlenecks  
-----------  
Performance is limited by 
execution of divide and square 
root operations (...). 
 
By removing all these 
bottlenecks, you can lower the 
cost of an iteration from 14.00 
to 2.00 cycles (7.00x speedup). 
 
Workaround(s): 
- Try to reduce the number of 
division or square root 
instructions. 
- If you accept to loose 
numerical precision, you can 
speedup your code by passing the 
following options to your 
compiler: (ffast-math or Ofast) 



8 MAQAO Tutorial series: Code Quality Analyzer  

2.6.3  Other possible outputs 
The previous example introduces a subset of the available issues. The 
following table extends it with other available hints (non exhaustive list). 
 

Composition and unrolling 
------------------------- 
It is composed of the loop 0 
and is not unrolled or unrolled 
with no peel/tail code (including 
vectorization). 
The analysis will be displayed for 
the first found loop: 0 

The "Composition and unrolling" 
paragraph explains how the source loop 
was break down to binary loops by your 
compiler. If the (source) loop is unrolled 
and/or vectorized, it will contain in most 
cases at least two binary loops: the main 
loop and a tail loop to process leftover 
iterations when the loop trip count is not a 
multiple of the unroll factor. If the loop is 
vectorized, two extra loops are often 
generated to increase the proportion of 
vector aligned loads/stores: another main 
loop with a different memory offset and a 
peel loop to set the first iteration of a main 
loop on a vector-aligned address. 

Type of elements and instruction set  
------------------------------------ 
1 SSE or AVX instructions are 
processing arithmetic or math 
operations on single precision FP 
elements in scalar mode (one at a 
time). 

This paragraph explains how your source 
will be mapped in assembly instructions 
to process your data. You will know which 
type of instructions was generated 
(arithmetic, math...), on which type of 
elements it will operated (single or double 
precision FP element, integers...) and 
how many elements at a time (one=scalar 
instructions or more=vector instruction). 

Vectorization  
------------- 
Your loop is not vectorized. 

This paragraph tells you if your loop were 
vectorized or not. 

Matching between your loop (...) 
-------------------------------- 
The binary loop is composed of 1 
FP arithmetical operations:  
- 1: divide  
The binary loop is loading 8 bytes 
(2 single precision FP elements). 
The binary loop is storing 4 bytes 
(1 single precision FP elements). 
 
 
 
Arithmetic intensity is 0.08 FP 
operations per loaded or stored 
byte. 

This paragraph gives the matching 
between your loop (in the source code) 
and the binary loop which is useful to: 

• check the unroll factor and 
vectorization 

• see how the work exposed at 
source level is spread in the 
different binary loops 

Arithmetic intensity displays the ratio 
between computation load and memory 
load, that is number of FP arithmetic 
operations divided by number of 
loaded/stored bytes 

  



9 MAQAO Tutorial series: Code Quality Analyzer  

Cycles and resources usage 
-------------------------- 
Assuming all data fit into the L1 
cache, each iteration of the 
binary loop takes 14.00 cycles. At 
this rate:  
- 0% of peak computational 
performance is reached (0.07 out 
of 8.00 FLOP per cycle (GFLOPS @ 
1GHz))  
- 3% of peak load performance is 
reached (0.57 out of 16.00 bytes 
loaded per cycle (GB/s @ 1GHz))  
- 1% of peak store performance is 
reached (0.29 out of 16.00 bytes 
stored per cycle (GB/s @ 1GHz)) 

This paragraph explains how well the 
assembly code can use computational 
and memory units in the specified 
processor. On optimal conditions (infinite 
trip count, all data in L1, no branch 
mispredictions...), it will give the minimal 
cost in cycles for one (binary) loop 
iteration. To translate to source loop 
iterations, use previous paragraphs. 

Bottlenecks  
----------- 
Performance is limited by 
execution of divide and square 
root operations (the divide/square 
root unit is a bottleneck).  
 
By removing all these bottlenecks, 
you can lower the cost of an 
iteration from 14.00 to 2.00 
cycles (7.00x speedup). 
 
Workaround(s): 
- Reduce the number of division or 
square root instructions: 
 * If denominator is constant over 
iterations, use reciprocal (...) 
- If you accept to loose numerical 
precision up to 2 ulp, you can 
speedup your code by passing the 
following options to your 
compiler: (ffast-math or Ofast) 
and mrecip 

This paragraphs lists performance 
bottlenecks. Fixing pathological cases will 
fix most critical ones. This is why the user 
is invited to fix as many of them as he can 
before reading this section. 

A very important point to check is vectorization. A loop is said “vectorized” if the compiler 

generated vector instructions to process iterations, that is instructions processing in parallel 

multiple data (using vector registers). In general, a loop is vectorized if it processes 

consecutive elements (in that case, elements in vector registers are consecutive in memory). 

On the report, check the following paragraphs (on the following examples, 32 bits FP 

elements can be processed four at a time for the same cost when vectorized). 

  



10 MAQAO Tutorial series: Code Quality Analyzer  

Not vectorized Vectorized 

Composition and unrolling  
------------------------- 
It is composed of the loop 0 
and is not unrolled or unrolled 
with no peel/tail code (including 
vectorization). 

Composition and unrolling  
------------------------- 
It is composed of the following 
loops [ID (first-last source 
line)]:  
- 0 (1-5)  
- 1 (5-5) 
and is unrolled by 4 (including 
vectorization).  
 
The following loops are 
considered as:  
- unrolled and/or vectorized: 1  
- peel or tail: 0 
The analysis will be displayed 
for the unrolled and/or 
vectorized loops: 1 

Type of elements and instruction set 
------------------------------------ 
1 SSE or AVX instructions are 
processing arithmetic or math 
operations on single precision FP 
elements in scalar mode (one at a 
time). 

Type of elements and instruction set 
------------------------------------ 
1 SSE or AVX instructions are 
processing arithmetic or math 
operations on single precision FP 
elements in vector mode (four at 
a time). 

Vectorization 
------------- 
Your loop is not vectorized. 
All SSE/AVX instructions are used 
in scalar version (...). 
 
 
 
 

Vectorization 
------------- 
Your loop is fully vectorized, 
using full register length. 
All SSE/AVX instructions are used 
in vector version (...). 

Matching between your loop (...) 
-------------------------------- 
The binary loop is composed of 1 
FP arithmetical operations: 
- 1: divide 
The binary loop is loading 8 bytes 
(2 single precision FP elements). 
The binary loop is storing 4 bytes 
(1 single precision FP elements). 

Matching between your loop (...) 
-------------------------------- 
The binary loop is composed of 4 
FP arithmetical operations: 
- 4: divide 
The binary loop is loading 32 
bytes (8 single precision FP 
elements). 
The binary loop is storing 16 
bytes (4 single precision FP 
elements). 

  



11 MAQAO Tutorial series: Code Quality Analyzer  

3 Expert 
Some items (in Italic) are architecture-specific. Presented below: x86-64. 

3.1 General Properties 

• nb instructions: number of instructions 

• nb uops: number of front-end (decoded) micro-ops, typically 1 per instruction (minus 1 if 

fused compare and branch) 

• loop length: code size in bytes 

• used registers: number of distinct registers used 

◦ x86 registers: general purpose (scalar integer) 

◦ used mmx registers: MMX (legacy SIMD) 

◦ used xmm registers: XMM (SIMD 128 bits) 

◦ used ymm registers: YMM (SIMD 256 bits) 

◦ used zmm registers: ZMM (SIMD 512 bits) 

◦ nb stack references: number of stack-pointer relative operands, typically corresponds to 

spill/fill (lower is better) 

3.2 Front-end 
• ASSUMED MACRO FUSION: if displayed, macro fusion (compare and branch) is applied. 

Allows to spare one front-end micro-operation 

• FIT IN UOP CACHE: if displayed, loop length and nb uops are below micro-op cache 

capacity. Streaming from uop cache is faster (that refetching/decoding instructions at each 

loop iteration) 

• micro-operation queue: number of cycles needed to stream micro-ops from the uop queue 

that is between the front- and the back-end 

• front end: number of cycles to stream micro-ops from the overall front-end (fetching, 

decoding, micro-operation queue) 

3.3 Back-end 
• uops PX: number of (back-end) micro-ops that will flow through the PX execution port/unit 

• cycles PX: minimum number of cycles required to stream uops through that unit/port 

• Cycles executing div or sqrt instructions: number of cycles spent in the divide/square-root 

unit 



12 MAQAO Tutorial series: Code Quality Analyzer  

• Longest recurrence chain latency (RecMII): minimum number of cycles caused by inter-

iteration dependencies. For a loop summing elements inside an array, that metric equals to 

the latency of the related ADD instruction 

3.4 Front-end and detailed OoO resources (UFS) (x86 only) 
UFS (Uops Flow Simulator), contrary to CQA, is a pseudo cycle accurate simulator that takes into 

account (limited) buffers size and simulate what happens every cycle for instructions and related 

micro-operation. It is presently supported only for the x86 architecture. 

• FE+BE cycles: min and max number of cycles for overall core (Front-end and Back-end) 

• Stall cycles: number of stall cycles during which core cannot dispatch/retire any instruction. 

Lower is better 

• X full (events): number of times the X resource is full (and then not stalled and no more 

accepting new micro-operations) 

3.5 Cycles Summary 

• Front-end: idem "front end" in the previous "Front-end" section, number of cycles spent in 

the front-end 

• Dispatch: number of cycles spent in the most contended execution port/unit, in other words 

is MAX (PX) 

• Data deps.: idem "Longest recurrence chain latency (RecMII)" in the previous "Back-end" 

section 

• Overall L1: MAX across the 3 previous items 

3.6 Vectorization ratios 
Proportion of vectorizable instructions that are actually vectorized. Higher is better. 

That section provides a breakdown per element type (integer vs FP) and then per operation type 

(add/sub, mul etc.). 

3.7 Vector efficiency ratios 
Will/must be renamed to vector length use/efficiency. Effective/average relative length/width used 

in vector/SIMD registers. Higher is better. 

That section provides a breakdown similar to section 3.6. 

Remark: Vectorization ratio = 0 does not imply vector efficiency = 0 since some scalar (not 

vectorized) instructions actually use some bits in vector registers (for instance 32 bits for a scalar 

instruction dealing with FP32 numbers). 

3.8 Cycles and memory resources usage 
Compare the CQA-computed load/store/compute metrics with the capacity of the core. For instance 

if CQA computes 24 bytes in the loop in 2 cycles (that is 12 cycles per cycle) and if the core can 

process up to 16 bytes per cycle, that metric is 75%. 



13 MAQAO Tutorial series: Code Quality Analyzer  

3.9 Front-end bottlenecks 
List of bottlenecks detected by CQA. A bottleneck is an issue which reduces front-end throughput 

below the core capacity. 

3.10 ASM code 
For each instruction, details: 

• Nb FU: number of Fused (Front-end) uops, typically 1 (fast path). 2 or more corresponds to 

complex and/or micro-coded instructions (slow path) 

• PX: number of uops going through PX. If an instruction can go to X ports, value is 1/X. For 

instance if an instruction dispatch a micro-operation that can go to P2 or P3: 0.50 in P2 and 

0.50 in P3 

• Latency: instruction latency (number of cycles needed for execution) 

• Recip. throughput: reciprocal throughput, that is average number of cycles to retire that 

instruction if repeated (assuming independent instructions, with no read-after-write 

dependency) 


