

ONE View
How to generate and use reports with ONE View

Version 1.17

January 2025

www.maqao.org

 1

MAQAO Tutorial series: ONE-View

1 Introduction
ONE View is the MAQAO module in charge of driving all other MAQAO modules in order to

produce reports aggregating results from all these tools. It automatizes the execution of other

MAQAO modules to generate reports in HTML pages, XLSX data sheets or text output.

ONE View offers several built-in reports combining both static and dynamic approaches to

get an overview of the application performance. This document details reports ONE, which

uses MAQAO modules LProf (a dynamic profiler) and CQA (a static code analyser).

2 Running ONE View
To generate a report using ONE View, the default command is:

It is also possible to provide the necessary parameters to ONE View from the command line.

It can be used when a small set of variables in the configuration file is needed. All existing

parameters for the configuration of the experiment are available in sections 3.2 and 3.3.

To list all options for ONE View:

The report ONE is the simplest and fastest report. It combines a profiling of the application

using LProf module with CQA static analysis on loops and functions. The scalability analysis

contains all data from the report ONE and additional data generated using several profilings

of the application with different values for the number of processes and the number of

threads.

$ maqao oneview –create-report=<report> –c=<config> [-xp=<dir>] [-of=<format>]

[--with-scalability]

Name of the configuration file

describing the experiment.

Configuration file is described in next

section

Name of the directory created by ONE-View. If it is not specified, the directory is called

maqao_YYYY-MM-DD_hh-mm-ss. It is referred in this file as experiment directory.

$ maqao oneview --help

Report format:

- html (default)

- xlsx (require zip)

- text

- all (all existing formats)

Report to produce: one Enable scalability analysis

 2

MAQAO Tutorial series: ONE-View

The report ONE (and all other report levels) can be enhanced using one or more cumulative
options that could run additional analyses and add more data into reports. These options are:

• --with-scalability (-WS): Run additional LPROF analyses and add several charts about
application scalability.

• --with-POP: Generate several additional metrics that do not need additional runs.

• --with-FLOPS: Generate several additional metrics that do not need additional runs.
Metrics are based on some hardware counters measured with LPROF.

More options will be added in future MAQAO versions.

3 Filling the Configuration File

3.1 Creating the configuration file
To generate a template of configuration file:

The template contains all available fields and it is fully documented. This document details all

fields in the next subsections. The configuration file uses the JSON syntax and all elements

must be in a main table named config, as shown in the following figure.

As JSON doesn’t allow comments, the configuration file template uses two tricks to help its

understanding:

• The key “#” is used to write a single line comment

• ONE-View keys never start with the “_” (underscore) character. If a key starts with it,

it means the entry is commented, as ONE-View will ignore it.

3.2 Main fields
- executable: Path to the binary of the application to analyse

- run_command: A string detailing how the application must be run. In this string, the

main executable is referred as <executable>. This substring is automatically replaced

by the correct executable name when ONE View needs to run any version of the

{

 “config”: {

 …

 }

}

$ maqao oneview –create-config[=<file>]

Name of the generated configuration file. If it is not specified, the

configuration file is called config.json and it is created in the current

directory.

 3

MAQAO Tutorial series: ONE-View

binary.

If the application does not need any parameter, the field has “<executable>” as value.

If the application needs two parameters, -a=5 and --b, the field value must be

“<executable> -a=5 --b”.

- mpi_command: A string detailing the MPI command to use to run the application. If

MPI should not be used, this string must be empty. If MPI is used, this field must

contain the call to mpirun or mpiexec with all its parameters, except the application

and its own parameters.

For example, if an application needs the following command to be run:

The corresponding configuration file contains:

- number_processes: Number of processes to use to run the application. Default is 1.

Can be referred as <number_processes> in the batch_script or the mpi_command

fields.

- batch_command: When the cluster uses a batch manager, this variable describes

how to use it. If a script is needed, it must be referred as <batch_script>.

- batch_script: Path to a script used by a batch manager. The script must be adapted

to ONE View by using the code <run_command> instead of the classic binary

execution command. For example, a batch script adapted for ONE View for SLURM

can be:

#! /bin/bash

#SBATCH SETTINGS

#SBATCH –J myJob

…

#APPLICATION SETTINGS

module load …

export MY_VAR …

#RUN THE APPLICATION

mpiexec –n 16 ./my_app

<mpi_comamnd> <run_command>

$ mpirun –n 4 ./my_app 250 –output=./log.out

{

 “content”: {

 “executable”: "./my_app",

 “run_command”: "<executable> 250 –output=./log.out",

 “mpi_command”: "mpirun –n 4",

 }

}

 4

MAQAO Tutorial series: ONE-View

- environment_variables: An optional table containing environment variables to be set

before running the application. Each entry has for key the environment variable name

and for value the environment variable value. Environment variables declaration can

be done using the shortcut syntax envv_<ENV_NAME>=<value>.

environment_variables can be used to set the environment variable

OMP_NUM_THREADS used by OpenMP.

- multiruns_params: When scalability report is generated, describes all experiments to

run. It is a table containing one entry per experiment, with following fields:

o number_processes – Number of processes for the experiment. Default is 1. It

substitutes <number_processes> in the batch_script or the mpi_command

fields for scalability runs.

o number_nodes – Number of nodes for the experiment. Default is 1. It

substitutes number_nodes for scalability runs.

o number_processes_per_node – Number of processes per node for the

experiment. Default is 1. It substitutes number_processes_per_node for

scalability runs.

o run_command – Command to use to run the executable for the experiment.

Default is the value specified in the run_command configuration field.

o mpi_command – Command to use to run MPI for the experiment. Default is

the value specified in the mpi_command configuration field.

o dataset – Path to the dataset to use for the experiment. Default is the value

specified in the dataset configuration field.

o run_directory – Path to a directory where to run the binary for the experiment.

Default is the value specified in the run_directory configuration field.

o script_variables – A set of user defined variables substituted on a batch script.

Default is the value specified in the script_variables configuration field.

o environment_variables – An optional table containing environment variables to

be set before running the application. Each entry has for key the environment

variable name and for value the environment variable value. Environment

variables declaration can be done using the shortcut syntax

envv_<ENV_NAME>=<value>. environment_variables can be used to set the

environment variable OMP_NUM_THREADS used by OpenMP. Environment

variables set in the base run are preserved in additional runs. To unset an

environment variable, its value must be set to nil or the field unset_envv can

be used.

o unset_envv – Can be a string with an environment variable name to unset for

the run, or a string table with several environment variables names.

o name – Name used to identify the run in reports. For readability reasons, it is

not always used and can be replaced in some sections of the reports by the

string “run <index>”, with index the position in multiruns_params, starting at 2

(index 1 represents the run described by main parameters)

3.3 Secondary fields
- dataset: Path to a directory containing the application dataset. If filled, this directory is

copied or linked (depending on the value of the dataset_handler link) into the

experiment directory. If dataset_handler is set to “copy”, the experiment directory

 5

MAQAO Tutorial series: ONE-View

must not be created in the dataset directory, and it is also advised to have the

directory specified in dataset be as small as possible.

- custom_categories: A table describing additional categories used in application

categorization reports. When external_libraries is used, one additional category is

created for each library. If custom_categories is filled, only categories specified are

used. Each category is a subtable with the following fields:

o type - "library" (the custom category is a single library), "all-external-libraries"

(shortcut to get one category for each entry in external-libraries as done by

default), "library_group" to accumulate several libraries into a single category

o value - "<library name>" when type is "library", nil when type is "all-external-

libraries", {"lib1.so", "lib2.so",…} when type is "library_group"

o name - Used only when type is "library_group", to specify the name of the

catergory

- experiment_name: An optional string copied into report main page that can be used

to distinguish various reports.

- external_libraries: An optional table describing dynamic libraries to analyse in addition

of the executable. By default, linked libraries are not analysed since most of them are

system libraries that are not the target of optimisation efforts. This option allows to

analyse the loops in the specified libraries, for instance when the application code is

in such a library. Each entry in the table is a string with the name of a library to

analyse.

- script_variables: A table of user defined variables that are substituted in the script

defined in batch_script. Each entry has for key the variable name and for value a

string or a number that will replace the tag <variable name> in the script, as for ONE

View built-in variables.

- scalability_reference: An optional string detailing which entry in the multiruns_params

table must be used as reference when scalability metrics are computed. Available

values are:

o main – Main experiment defined in the configuration (default value)

o lowest-time –The run with the shortest time

o highest-time –The run with the highest time

o lowest-threads –The run with the lowest number of threads

o highest-threads –The run with the highest number of threads

o lowest-efficiency –The run with the worst efficiency

o highest-efficiency –The run with the best efficiency

o <number> –The run at index <number> in the multiruns_params table

- source_code_location: An optional string detailing where the source code is located.

It is needed to localize the source code of your application if it is not at the location

defined in debug data (which is set when compiling the application).

- run_directory: A string detailing where the executable should be run. Default value is

the local directory. Some applications must be run from a specific directory, most of

the time related to the dataset directory. This field is used to specify this path. The

substring “<dataset>” can be used to represent the path to the dataset directory

located in the experiment directory and it is automatically substituted by the real path

by ONE View during runs.

- maximal_path_number: A number indicating the maximal number of paths in the

control flow graph a loop can have. Loops with a greater number of paths will not be

analysed.

 6

MAQAO Tutorial series: ONE-View

- number_nodes: Number of nodes to use to run the application on the cluster. Can be

referred as <number_nodes> in the batch_script or the mpi_command fields.

- number_processes_per_node: Number of processes per nodes to use to run the

application. Can be referred as <number_processes_per_node> in the batch_script

or the mpi_command field.

- dataset_handler: Specify how the dataset is handled in the experiment. Default value

is link meaning that a link is created from the experiment directory to the dataset.

copy can be used to copy the full dataset content into the experiment directory.

- keep_executable_location: Specify if the executable must be copied and run from the

experiment directory (false, default value), or if it must be run from its original location

(true).

- lprof_params: An optional string representing additional parameters passed to

LPROF during the profiling step. Refer to the LProf documentation for the list of

available options.

- lprof_post_process_params: An optional table representing additional parameters

passed to LPROF during formatting step.

The following fields are not used by report ONE and reserved for future releases:

- filter

- frequencies

- profile_start

- additional_hwc

- bucket_threshold

- decan_multi_variant

- decan_all_variants

- decan_params

- vprof_params

- is_sudo_available

- excluded_areas

- included_areas

3.4 Simple configuration templates

Some basic configuration file templates can be generated using the command

The command generates several simple configuration files that list basic options to use

depending on the use case (sequential application, parallel application that uses either MPI

or OpenMP, how to setup a scalability analysis).

The optional value <case> can be used to generate only one template, as all templates are

generated if it is not defined. Available cases are seq, lib, mpi, omp, scalability, script.

$ maqao oneview --create-config-template[=<case>]

 7

MAQAO Tutorial series: ONE-View

4 Reading Reports
Reports are generated in <experiment_directory>/REPORTS/ as

<executable>_<report>.<format>, where <executable> is the analysed executable, <report>

is the value of the parameter –create-report and <format> the value of the parameter format.

4.1 HTML Output
HTLM reports can be read using Mozilla Firefox, Google Chrome and Microsoft Edge web

browsers. The main file is index.html, located in

<experiment_directory>/RESULTS/<report>_html/. All tabs have a menu located at the top of

the tab which can be used to navigate between tabs. All tabs are described in next

subsections. On most on tabs, there are one or several symbols that display help when the

cursor is over them.

4.1.1 Main Menu
Located on the top of each page, the main menu is used to navigate into the report.

Figure 1- HTML report main menu

The orange item is the current location. Global entry can be expanded by moving the cursor

over it to display a sub menu. Additional entries can appear depending of the context.

• Global is the report entry point and described some general data about the

application and the experiment

o Configurations contains all configuration parameters used to generate the

experiment

o Environment Variables lists all environment variables set during the

application execution

o Outputs is a copy of what is displayed on the standard output during the

LPROF run

o Logs is a copy of the log produced during the experiment

• Application contains additional charts about the application

• Functions is a profiling of the application at the function level

• Loops is a profiling of the application at the loop level

• Topology summarizes all nodes, processes and threads run by the application.

o lstopo displays the ouput produced by the external tool lstopo-no-graphic in

order to detail how processes were pinned during the run.

o lstopo_PU uses lstopo-no-graphics and LPROF results to give a view based

on material objects (node / core / processing unit) of processes execution

time.

o lstopo_threads uses lstopo-no-graphics and LPROF results to give a view

based on logical objects (node / process / thread) of processing unit execution

time.

 8

MAQAO Tutorial series: ONE-View

4.1.2 Global
The file index.html is the report index and it presents several sections:

• Global Metrics on the top left, that presents several metrics the summarize the

application performances, the application charactristics or potentiel speedup that can

be achieved by performing some changes on the application. Some help about each

metric is available by moving the cursor over the metric name.

• Chart box, located on the top right, is used to displayed charts relative to global

metrics. Displayed charts can be changed by clicking on some global metrics

identified by a blue bar on their left when the cursor is over. Clickable metrics will be

detailled in a folowing subsection. When the symbol ⏎ appears in the box header

right, it can be clicked to display the summary speedup chart.

• Experiment Summary on the page bottom left summarizes several parameters

about the experiment

• Configuration Summary on the bottom right displays some of the configuration

parameters set to run the experiment. The full configuration is available in the main

menu entry Configurations

Disclaimer: All screenshots presented in this manual are extracted from the default

report. When the scalability analysis is used, data from all runs are displayed in most of

the pages and charts can be slightly different.

 9

MAQAO Tutorial series: ONE-View

Figure 2- Global Report Without Scalability Analysis

4.1.2.1 Global Metrics
• Total Time (s) – Not clickable – Time spent during the application execution

expressed in seconds

• Max (Thread Active Time) (s) – Not clickable, previously Profiled Time (s) – Time

spent during the application profiling execution expressed in seconds. It can be lower

than Total Time (s) when a part of the application is excluded from the profiling using

option profile_start or when the application is passive-waiting (accounted only in total

time).

• Average Active Time (s) – Not clickable – Sum of threads CPU time divided by

threads count.

• Activity Ration (%) – Not clickable – Sum over all threads of their CPU time divided

by the sum of their walltime.

 10

MAQAO Tutorial series: ONE-View

• Average Number of Active Threads – Clickable – Sum over all threads of their

active time divided by the application walltime. When clicked, it displays a chart

presenting the metric evolution across the time.

• Affinity Stability (%) – Not clickable – Sum over all threads of the max time spent on

the same CPU divided by the sum over all threads of the thread walltime.

• Time in analysed loops (%) – Clickable – Percentage of time spent in application

loops, based on the Profiled Time (s) value. When clicked, it displays a chart

presenting a loop-based profiling.

• Time in analysed innermost loops (%) – Clickable - Percentage of time spent in

application innermost loops, based on the Profiled Time (s) value. When clicked, it

displays a chart presenting an innermost loop-based profiling.

• Time in user code (%) – Clickable – Percentage of the time spent in the user code,

based on the Profiled Time (s) value. User code corresponds to the functions

located in the application main binary and libraries listed in external_libraries. When

clicked, it displays a categorization of the application.

• Compilation Options Score (%) – Clickable - An analyse of compilation options

used to produce the application binary. Several compilation options are checked for

each source file found in debug data, and a global score is produced. When clicked, it

displays a table detailing for each source file compilation options that are missing to

either improved the report accuracy or to obtain good performances with the compiler.

• Array Access Efficiency (%) – Not clickable – Indicates if data layout is adapted to

processor capabilities or not

• Perfect Flow Complexity – Clickable – Optimistic speedup of the application if the

number of paths is reduced. When clicked, it displays a categorization of loops based

on their path count.

• Perfect OpenMP + MPI + Pthread – Not clickable – Optimistic speedup of the

application if time spent in OpenMP, MPI and Pthread runtimes is null.

• Perfect OpenMP + MPI + Pthread + Perfect Load Distribution – Not clickable –

Optimistic speedup of the application if time spent in OpenMP, MPI and Pthread

runtimes is null and if all threads are perfectly balanced.

• No Scalar Integer – Clickable – Optimistic speedup obtainable if all instructions

performing scalar integer computation and address computation are removed from

the innermost loops. When clicked, it displays a chart detailing the evolution of the

speedup based on which loops are optimized

• FP Vectorised – Clickable – Optimistic speedup that can be achieved if all floating-

point instructions are vectorised in the innermost loops. When clicked, it displays a

chart detailing the evolution of the speedup based on which loops are optimized

• Fully Vectorised – Clickable – Optimistic speedup that can be achieved if all

instructions are vectorised in the innermost loops. When clicked, it displays a chart

detailing the evolution of the speedup based on which loops are optimized

• FP Arithmetic Only – Clickable – Optimistic speedup that can be achieved by

keeping only arithmetic floating-point instructions. When clicked, it displays a chart

detailing the evolution of the speedup based on which loops are optimized

Some additional global metrics are not available in report ONE.

 11

MAQAO Tutorial series: ONE-View

4.1.2.2 Charts
This section details all charts that can be displayed in the chart box.

• CQA Potential Speedups Summary – Default chart displayed on the page, it

summarizes various speedups (No Scalar Integer, FP Vectorised, Fully

Vectorised) and their evolution according to the number of optimized loops. The x-

axis corresponds to the number of optimized loops. Loops are ordered by their

coverage. The y-axis corresponds to an optimistic speedup on the total application

time that can be achieved.

Figure 3- CQA Potential Speedups Summary Chart

• Average Active Threads Count – Available through the global metric Average

Number of Active Threads, the chart displays the number of active threads across

the application execution time. The time is split in 100 slices. Bars color varying from

blue to red depending on the value (blue means few threads are active, red means all

threads are active).

Figure 4 - Average Active Threads Count Chart

 12

MAQAO Tutorial series: ONE-View

• Loop Based Profile – Available through the global metric Time in loops (%), the

chart displays a profiling of the application at the loop level. Loops are grouped based

on their coverage into buckets. Loops are divided into three categories:

Innermost/Single are loops that don’t contain any other loop, InBetween loops are

loops that contain a least one other loop and are contained in a loop, and Outermost

loops contains others loops, but are not contained in a loop. For each bucket and

each loop category, the chart displays the number of loops and the coverage they

represent. In addition, the cumulated coverage across buckets in displayed.

Figure 5- Loop Based Profile Chart

• Innermost Loop Based Profile – Available through the global metric Time in

innermost loops (%), the chart is similar to Loop Based Profile, but it focuses on

Innermost/Single loops only.

Figure 6 - Innermost Loop Based Profile Chart

• Application Categorization - Available through the global metric Time in user code

(%), the chart details the percentage of the application spent in various categories.

 13

MAQAO Tutorial series: ONE-View

Custom categories can be created using configuration parameter custom_categories.

Figure 7- Application Categorization Chart

• Loop Path Count Profile – Available through the global metric Perfect Flow

Complexity, the chart categorizes innermost loops into buckets according to their

number of paths. For each bucket, the chart displays the number of loops it contains

and how much coverage it represents. In addition, the cumulated coverage across

buckets is displayed. The chart allows to detect if the application has potential

performances issues because of loops with multiple number of paths.

Figure 8 - Loop Path Count Profile Chart

• Cumulated Speedup If … - Available through global metrics No Scalar Integer, FP

Vectorised and Fully Vectorised, the chart details one specific speedup shown in

CQA Potential Speedups Summary based on the clicked global metric. The x-axis

 14

MAQAO Tutorial series: ONE-View

corresponds to loops sorted by the higher global speedup.

Figure 9 - Cumulated Speedup if ... Chart

4.1.3 Summary
The Summary tab shows various analysis at the application level and at loop level. It is split

in three sections:

4.1.3.1 Stylizer
A basic analysis at application level that checks if the ONE-View run is relevant or if it must

be redo after some changes. Each analysis has a score based on the importance of the

issue (higher means more important) and a color based on that score (green means

everything is good, red means there is an issue that should be fixed in most of time, orange

means there is a minor issue).

4.1.3.2 Strategizer
An analysis at application level that checks basic performance metrics. As for Stylizer, each

analysis has a score based on the importance of the issue (higher means more important)

and a color based on that score (green means everything is good, red means there is an

issue that should be fixed in most of time, orange means there is a minor issue).

4.1.3.3 Optimizer
An analysis at loop level that checks performance issues of hotter innermost loops, based on

4 axes:

• Loop Computation Issues – Issues related to how numerical computation is done.

• Control Flow Issues – Issues related to the loop control flow that could cause

performance issues.

• Data Access Issues – Issues related to how data is accessed in the loop.

• Vectorization Roadblocks – Issues that prevent efficient vectorization.

Each analysis as a score related to the estimated difficulty to fix it. The same analysis can

appear several times as it can be related to various analysis axes.

Loops can be clicked to open their own report detailed in section 4.1.8.

 15

MAQAO Tutorial series: ONE-View

4.1.4 Application
The Application tab shows several charts available by clicking on the corresponding menu

entry on the left. Menu entries whose name started by Scalability are only available in

scalability reports. Other entries are available on all reports.

4.1.4.1 Application Categorization
Similar to the graph of the same name presented in section 4.1.2.2, it details the percentage

of the application spent in various categories. The section Detailed Application

Categorization can be expanded to reveal a table with all data for each thread, process and

node. An example is available with Figure 10 - Application Categorization. In this example,

there is about 20% of the application time spent in MPI runtime (not MPI parallel sections),

70% in the application code (including parallel regions) and 10% in two other categories.

Figure 10 - Application Categorization

4.1.4.2 Function Based Profile
It presents a profiling of the application at the function level. Functions are grouped by

coverage in buckets and for each bucket, three metrics are available:

- The number of functions in the bucket,

- The total coverage of the bucket,

- The cumulated coverage with all previous buckets

An example is available with Figure 11 - Function Based Profile. The example presents an

application containing five functions with a coverage greater than 8%, which represents 54%

of the total time.

 16

MAQAO Tutorial series: ONE-View

Figure 11 - Function Based Profile

4.1.4.3 Scalability - Coverage Per Category
This view is only available for reports executed with scalability mode enabled. It presents the

same data than section 4.1.4.1, but there is one bar per configuration in the scalability

parameters. Configurations are formatted as <nb_processes>-<nb_threads> It allows to see

the impact of the number of processes and threads on the different categories. An example

is shown by Figure 12 - Scalability: Coverage Per Category. In the example, we can see the

time spent in MPI library increase with the number of processes.

Figure 12 - Scalability: Coverage Per Category

4.1.4.4 Scalability - Time Per Category
This view is only available for reports executed with scalability mode enabled. It presents

data similar than section 4.1.4.3, but now displays time (in seconds) instead of coverage. It

 17

MAQAO Tutorial series: ONE-View

allows to see the impact of the parallelism over the application time and categories. An

example is presented by Figure 13 - Scalability: Time Per Category.

Figure 13 - Scalability: Time Per Category

4.1.4.5 Scalability - Coverage Per Parallel Efficiency
This chart is only available for reports executed with scalability mode enabled. It presents the

efficiency of functions across runs of the scalability analysis. The efficiency is based on the

first run described in parameters so the first bar is always in the grey color. Grey elements

are functions that where not found during the first profiling. Colours varies from green for

efficient functions to red for not efficient functions. An example is displayed by Figure 14 -

Scalability: Coverage per Parallel Efficiency.

Figure 14 - Scalability: Coverage per Parallel Efficiency

 18

MAQAO Tutorial series: ONE-View

4.1.5 Functions
The Functions tab presents a profiling of the application at the function level, listing all

detected functions with their coverage. By clicking on the arrow on the left of any function,

the box can be opened to reveal all profiled loops belonging to the function represented as a

tree. Loops can also be opened by clicking on the left arrow. If a loop has a circle instead of

an arrow, it means it is an innermost loop. All coverages are global to the application. A row

can be fully expanded by clicking on the symbol + appearing on the right of the current row.

By clicking on a column header, the table is sorted according to this column.

By right-clicking on a row (either loop or function), a menu appears and allows to display

several charts:

- Load Distribution: The distribution of the function / loop coverage across threads.

- Sorted Load Distribution: The distribution of the function / loop coverage descending

sorted across threads.

- Load Distribution All Threads: The distribution of the function / loop coverage across

threads, including 0 values for threads that do not execute the function / loop.

- Scalability Report: Only available in the scalability analysis, it presents the efficiency

and the speedup of the functions / loop across all experiments of the scalability

analysis.

- Load Callchains: A table displaying call chains of the selected function or loop.

- Go to reports …: Open the detailed report of the selected function or loop in the

current tab.

The topmost tab Filter allows to filter the functions according to the library where they are

defined.

By double-clicking on a function or a loop, a new tab presenting all results for the loop is

opened in the browser. Details about loop tabs are described in the subsection Loop and

details about function tabs are described in the subsection Function.

In the scalability report, optional columns can be displayed by clicking on boxes in the list

above the table to display efficiency and speedups from the scalability analysis.

4.1.6 Function
The Function tab is not accessible from the menu, but only from tabs Functions and

Loops. This tab is split in two panels with a width that can be adjusted by moving the vertical

blue bar on the left or on the right. Each panel content can be changed by selecting a report

in the select box. Current reports are:

- The source code if available.

- The call chains table.

- The load distributions charts.

- The CQA report. More details about CQA are available in the CQA tutorial available

at http://maqao.org/release/MAQAO.Tutorial.CQA.intel64.pdf. Current path can be

http://maqao.org/release/MAQAO.Tutorial.CQA.intel64.pdf

 19

MAQAO Tutorial series: ONE-View

changed using arrows in the path selection header or by selecting a path identifier in

the text box then clicking on the OK button.

- The function loop hierarchy with links to all its loops report.

- In the scalability report, the function scalability report.

The symbol can be clicked to open the current panel in a new browser tab. The same

report cannot be opened in both panels.

4.1.7 Loops
The Loops tab presents a profiling of the application at the loop level, listing all analysed

loops. For each loop, there is the MAQAO identifier, data about the location in the source

code and the coverage with a colour associated to it. The colour is red when the loop is hot

(high coverage) and it goes to blue when the loop is cold (low coverage).

Additional columns can be displayed by checking to corresponding box just above the table.

By clicking on a column header, the table is sorted according to this column.

By right-clicking on a row, a menu appears and allows to display several charts:

- Load Distribution: The distribution of the loop coverage across threads.

- Sorted Load Distribution: The distribution of the loop coverage descending sorted

across threads.

- Load Distribution All Threads: The distribution of the loop coverage across threads,

including 0 values for threads that do not execute the loop.

- Scalability Report: Only available in the scalability analysis, it presents the efficiency

and the speedup of the loop across all experiments of the scalability analysis.

The topmost tab Filter allows to filter the loops according to the library where they are

defined.

By double clicking on a loop, a new tab presenting all results for the loop is opened in the

browser. Details about this tab are described in the subsection Loop.

4.1.8 Loop
The tab Loop is not accessible from the menu, but only from tabs Functions and Loops.

This tab contains all available data about a specific loop and is similar than Function tab

described in section 4.1.6. Its reports are:

- The source code if available,

- The assembly code with a memory group analysis that can be displayed by clicking

on the corresponding button. A memory group is a set of assembly instructions that

access to a same memory region. Most of the time, it corresponds to a same source

data structure.

- The call chains table.

- The load distributions charts

- The CQA report. More details about CQA are available in the CQA tutorial available

at http://maqao.org/release/MAQAO.Tutorial.CQA.intel64.pdf. Current path can be

changed using arrows in the path selection header or by selecting a path identifier in

the text box then clicking on the OK button.

http://maqao.org/release/MAQAO.Tutorial.CQA.intel64.pdf

 20

MAQAO Tutorial series: ONE-View

- A table with more advanced CQA metrics

- In the scalability report, the function scalability report.

The symbol can be clicked to open the current panel in a new browser tab. The same

report cannot be opened in both panels.

4.1.9 Topology
The tab Topology presents the topology of the run, meaning how threads, processes and

nodes used during the run are organised. The table can be expanded by clicking on the left

arrow, or fully expanded by clicking on the + symbol appearing on the right of the current

row.

By double-clicking on a thread row, a new tab with the thread profiling at the function level is

opened and by right-clicking on it, a contextual menu appears, allowing to open the thread

profiling using button Profile, or to display a chart describing thread usage across time using

button Usage.

In the scalability report, additional tables are available for each experiment.

4.2 Text Output
The text report is displayed on the terminal. It can be customized using several options:

• --text-global [=on/off]: Display Global section if parameter is on (default), else do not

display it if off.

• --text-summary [=on/off]: Display Summary section if parameter is on (default), else

do not display it if off.

• --text-application [=on/off]: Display Application section if parameter is on (default),

else do not display it if off.

• --text-functions [=on/off]: Display Functions section if parameter is on (default), else

do not display it if off.

• --text-functions-full [=on/off]: Display all data for Function section if parameter is on

(default), else do not display it if off.

• --text-loops [=on/off]: Display Loops section if parameter is on (default), else do not

display it if off.

• --text-loops-full [=on/off]: Display all data for Loops section if parameter is on

(default), else do not display it if off.

• --text-cqa [=on/off/[module:]id1, [module:]id2]: Display CQA section if parameter is on

(default), else do not display it if off. Analysed loops can be filtered by giving for each

loop its module (binary (default) or an entry in external_libraries) and its MAQAO

identifier.

• --text-cqa-full [=on/off/[module:]id1, [module:]id2] Display all data for CQA section if

parameter is on (default), else do not display it if off. Analysed loops can be filtered by

giving for each loop its module (binary (default) or an entry in external_libraries) and

its MAQAO identifier.

Default output display sections Global, Summary, Application, Functions, Loops and CQA.

Text report sections are similar to corresponding HTML sections. CQA section is CQA

reports of selected loops.

 21

MAQAO Tutorial series: ONE-View

There is no special output for scalability in text output, it will be added in a future update.

4.3 XLSX Output
Available using option --output-format=xlsx in the command line, XLSX files can be read by

several softwares: Microsoft Office Excel, LibreOffice, OpenOffice. The file contains several

tabs with a content presented in HTML section (section 4.1). To generate XLSX reports, the

command ‘zip’ must be available.

5 Comparing Reports
During the optimization process, applications are often analysed several times to get results

of various changes. As it can be time consuming to compare manually several reports, ONE-

View offers a way to generate an HTML report that compare existing ONE-View reports.

There are no restrictions on what can be compared using this option. It handles various

applications, architectures, compilations options, source code …

It produces a directory containing an HTML report. index.html is the main file and is very

similar to what is presented in section 4.1.2, excepted charts compare given runs instead of

focusing on a single one. It is shown in Figure 15 - Comparison Index.

To improve the readability of the section Experiment Summary, values across runs are

compared. However, the comparison of compilation options can fail as source files used for

the comparison are selected using their coverages which can change between runs.

$ maqao oneview --compare-reports --inputs=<xp1>,<xp2>…

 22

MAQAO Tutorial series: ONE-View

Figure 15 - Comparison Index

summary.html presents a comparison of all Summary reports. Sections Stylizer and

Strategizer are similar to what is presented for classic ONE-View report as described in

sections 4.1.3.1 and 4.1.3.2. Section Optimizer reuses categories described in section

4.1.3.3 to details how many times each issue appears in analysed runs. An example is

shown by Figure 16 - Summary Comparison.

 23

MAQAO Tutorial series: ONE-View

Figure 16 - Summary Comparison

functions.html presents a function-based profile of all the given reports. Results are

displayed using two layouts:

• First layout uses source locations to group assembly functions into a virtual source

function. Each box contains one source function. This layout can be used when the

compiler generated several assembly versions of the same source loop, or when the

assembly function renaming is different from a compiler to another one.

• Second layout (named Old Layout in the report) uses assembly files and function

names to group assembly functions. As there may have a lot of differences between

compared experiments, some functions may not appear in all runs and their

corresponding values are nil. Rows can be sorted by clicking on any column header.

Both layouts are shown by Figure 17 - Functions Comparison.

 24

MAQAO Tutorial series: ONE-View

Figure 17 - Functions Comparison

loops.html presents a source loop-based comparison, that is computed by gathering

assembly loops that share a common start source location.

Each source loop is a block that can be expanded to display all the matching source regions

and some metrics about assembly loops for each run. The coverage associated to the

source loop is the sum across all runs of all assembly loop coverages that have been

attached to it.

Source loops can be ordered by global coverage (default order) or by source location using

buttons on the top of the page. By default, only source functions whose at least one

assembly loop has been found in each run are displayed. The button “Show All Loops” can

be used to display all found source loops. An example is shown by Figure 18 - Loops

Comparison.

 25

MAQAO Tutorial series: ONE-View

Figure 18 - Loops Comparison

6 Stability Report

ONE-View can be used to analyze an application or system stability by running and

measuring the application several times and then computes statistics across runs.

Several specific options can be used to customize the analysis:

• -rep / --repetitions – Select how many times the application must be run. Default value

is 31.

• --delay – Define a delay in second between two consecutive runs. Default value is 0.

• --ranges-count – Define the number of ranges used in statistics computation. Default

is 20.

• --outliers-count – Define how many outliers runs must be removed during statistics

computation. Default is 0.

Other options detailed in sections 3.2 and 3.3 can also be used to customize or configure a

run to generate stability reports.

$ maqao oneview --analyze-stability -c=<config> […]

 26

MAQAO Tutorial series: ONE-View

6.1 Global
As presented in section 4.1.2 and shown by Figure 19 - Stability Index, the file index.html is

the report index and it presents several sections. Only the content of the chart section,

shown by Figure 20 - Stability Charts will be detailed.

Figure 19 - Stability Index

Chart section contains:

• A first bar chart presenting the selected metric value across all runs,

• Some basic statistics computed on these values (minimum, median, average and

maximum),

• A percentile repartition,

• A second bar chart presenting the distribution of values into ranges. Ranges are

determined by splitting the interval between the minimum and the maximum into

several sub intervals that have the same size.

 27

MAQAO Tutorial series: ONE-View

Figure 20 - Stability Charts

6.2 Functions
functions.html reuses what is presented in Section 4.1.5 with metrics specific to stability

reports. Each function / loop can be double clicked to open the corresponding object report in

a new page.

6.3 Loops
loops.html presents a listing of innermost loops, sorted by their coverage. Data can be

sorted by clicking on any column header, columns can be displayed / hidden using

checkboxes in the section Columns Filter, and each metric can be clicked to display charts

and data presented in the chart section from section 6.1. Loop IDs can be clicked to display

the corresponding loop report

6.4 Loop / Function
Each function and loop has its own report that contains two sections:

• On the left side, the object source code

• On the right side, data and charts presented in Section 6.1. The displayed metric can

be selected using the top scrolling list.

