Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (180.13 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3.00 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (89.95%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] CPU activity is good
CPU cores are active 98.91% of time
[ 4 / 4 ] Threads activity is good
On average, more than 98.62% of observed threads are actually active
[ 4 / 4 ] Affinity is good (99.97%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (6.58%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (89.66%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.29%) lower than cumulative innermost loop coverage (89.66%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 169 - exec | Execution Time: 6 % - Vectorization Ratio: 76.71 % - Vector Length Use: 20.86 % | |
►Loop Computation Issues | 16 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each. | 12 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Control Flow Issues | 36 | |
○ | [SA] Too many paths (32 paths) - Simplify control structure. There are 32 issues ( = paths) costing 1 point each with a malus of 4 points. | 36 |
►Data Access Issues | 32 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 30 issues (= instructions) costing 1 point each. | 30 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 36 | |
○ | [SA] Too many paths (32 paths) - Simplify control structure. There are 32 issues ( = paths) costing 1 point each with a malus of 4 points. | 36 |
►Inefficient Vectorization | 30 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 30 issues (= instructions) costing 1 point each. | 30 |
►Loop 177 - exec | Execution Time: 6 % - Vectorization Ratio: 74.89 % - Vector Length Use: 20.86 % | |
►Loop Computation Issues | 16 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each. | 12 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Control Flow Issues | 36 | |
○ | [SA] Too many paths (32 paths) - Simplify control structure. There are 32 issues ( = paths) costing 1 point each with a malus of 4 points. | 36 |
►Data Access Issues | 32 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 30 issues (= instructions) costing 1 point each. | 30 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 36 | |
○ | [SA] Too many paths (32 paths) - Simplify control structure. There are 32 issues ( = paths) costing 1 point each with a malus of 4 points. | 36 |
►Inefficient Vectorization | 30 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 30 issues (= instructions) costing 1 point each. | 30 |
►Loop 288 - exec | Execution Time: 5 % - Vectorization Ratio: 75.62 % - Vector Length Use: 20.51 % | |
►Loop Computation Issues | 12 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 177 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 54 issues ( = data accesses) costing 2 point each. | 108 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 67 issues (= instructions) costing 1 point each. | 67 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 108 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 54 issues ( = data accesses) costing 2 point each. | 108 |
►Inefficient Vectorization | 67 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 67 issues (= instructions) costing 1 point each. | 67 |
►Loop 149 - exec | Execution Time: 4 % - Vectorization Ratio: 69.23 % - Vector Length Use: 19.83 % | |
►Loop Computation Issues | 8 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 180 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 51 issues ( = data accesses) costing 2 point each. | 102 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 76 issues (= instructions) costing 1 point each. | 76 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 102 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 51 issues ( = data accesses) costing 2 point each. | 102 |
►Inefficient Vectorization | 76 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 76 issues (= instructions) costing 1 point each. | 76 |
►Loop 675 - exec | Execution Time: 4 % - Vectorization Ratio: 77.35 % - Vector Length Use: 21.07 % | |
►Loop Computation Issues | 36 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 8 issues (= instructions) costing 4 points each. | 32 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Control Flow Issues | 260 | |
○ | [SA] Too many paths (256 paths) - Simplify control structure. There are 256 issues ( = paths) costing 1 point each with a malus of 4 points. | 260 |
►Data Access Issues | 60 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 58 issues (= instructions) costing 1 point each. | 58 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 260 | |
○ | [SA] Too many paths (256 paths) - Simplify control structure. There are 256 issues ( = paths) costing 1 point each with a malus of 4 points. | 260 |
►Inefficient Vectorization | 58 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 58 issues (= instructions) costing 1 point each. | 58 |
►Loop 153 - exec | Execution Time: 4 % - Vectorization Ratio: 79.84 % - Vector Length Use: 21.25 % | |
►Loop Computation Issues | 16 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each. | 12 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Data Access Issues | 40 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 38 issues (= instructions) costing 1 point each. | 38 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Inefficient Vectorization | 38 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 38 issues (= instructions) costing 1 point each. | 38 |
►Loop 290 - exec | Execution Time: 4 % - Vectorization Ratio: 74.93 % - Vector Length Use: 20.28 % | |
►Loop Computation Issues | 12 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 129 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 38 issues ( = data accesses) costing 2 point each. | 76 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 51 issues (= instructions) costing 1 point each. | 51 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 76 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 38 issues ( = data accesses) costing 2 point each. | 76 |
►Inefficient Vectorization | 51 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 51 issues (= instructions) costing 1 point each. | 51 |
►Loop 161 - exec | Execution Time: 3 % - Vectorization Ratio: 78.33 % - Vector Length Use: 21.40 % | |
►Loop Computation Issues | 16 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each. | 12 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Data Access Issues | 40 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 38 issues (= instructions) costing 1 point each. | 38 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Inefficient Vectorization | 38 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 38 issues (= instructions) costing 1 point each. | 38 |
►Loop 208 - exec | Execution Time: 3 % - Vectorization Ratio: 76.80 % - Vector Length Use: 20.77 % | |
►Loop Computation Issues | 32 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 7 issues (= instructions) costing 4 points each. | 28 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 122 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 36 issues ( = data accesses) costing 2 point each. | 72 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 48 issues (= instructions) costing 1 point each. | 48 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 72 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 36 issues ( = data accesses) costing 2 point each. | 72 |
►Inefficient Vectorization | 48 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 48 issues (= instructions) costing 1 point each. | 48 |
►Loop 240 - exec | Execution Time: 3 % - Vectorization Ratio: 69.64 % - Vector Length Use: 19.64 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 35 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 8 issues ( = data accesses) costing 2 point each. | 16 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 17 issues (= instructions) costing 1 point each. | 17 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 16 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 8 issues ( = data accesses) costing 2 point each. | 16 |
►Inefficient Vectorization | 17 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 17 issues (= instructions) costing 1 point each. | 17 |