Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 0 / 4 ] Application profile is too short (4.85 s)
If the overall application profiling time is less than 10 seconds, many of the measurements at function or loop level will very likely be under the measurement quality threshold (0,1 seconds). Rerun to increase runtime duration: for example use a larger dataset or include a repetition loop.
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3.00 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3.00 / 3 ] Architecture specific option -x GRANITERAPIDS is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.21 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (48.48%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.29% of time
[ 3 / 4 ] A significant amount of threads are idle (19.01%)
On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Affinity is good (98.44%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (44.65%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (47.61%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.88%) lower than cumulative innermost loop coverage (47.61%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 88 - exec | Execution Time: 44 % - Vectorization Ratio: 35.93 % - Vector Length Use: 16.99 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
►Control Flow Issues | 3 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each. | 2 |
►Vectorization Roadblocks | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
►Inefficient Vectorization | 2 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each. | 2 |
○Loop 94 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop 96 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 8 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
►Loop 87 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 6.25 % | |
►Control Flow Issues | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 9 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 90 - exec | Execution Time: 0 % - Vectorization Ratio: 33.33 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 82 - exec | Execution Time: 0 % - Vectorization Ratio: 34.43 % - Vector Length Use: 14.45 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 74 | |
○ | [SA] Too many paths (70 paths) - Simplify control structure. There are 70 issues ( = paths) costing 1 point each with a malus of 4 points. | 74 |
►Data Access Issues | 4 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each. | 2 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 74 | |
○ | [SA] Too many paths (70 paths) - Simplify control structure. There are 70 issues ( = paths) costing 1 point each with a malus of 4 points. | 74 |
►Inefficient Vectorization | 4 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each. | 2 |
○ | [SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points. | 2 |
►Loop 58 - exec | Execution Time: 0 % - Vectorization Ratio: 50.00 % - Vector Length Use: 22.92 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, BROADCAST) - Simplify data access and try to get stride 1 access. There are 4 issues (= instructions) costing 1 point each. | 4 |
►Inefficient Vectorization | 4 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, BROADCAST) - Simplify data access and try to get stride 1 access. There are 4 issues (= instructions) costing 1 point each. | 4 |
►Loop 86 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.16 % | |
►Control Flow Issues | 6 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 6 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 46 - exec | Execution Time: 0 % - Vectorization Ratio: 30.77 % - Vector Length Use: 13.94 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 95 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.55 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 11 | |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 11 | |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |