options

exec - 2024-03-22 11:56:14 - MAQAO 2.19.1

Help is available by moving the cursor above any symbol or by checking MAQAO website.

Stylizer  

[ 4 / 4 ] Application profile is long enough (15.89 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2.97 / 3 ] Optimization level option is correctly used

[ 2.97 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 2.97 / 3 ] Architecture specific option -march=native is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.35 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

Optimizer

Loop IDModuleAnalysisPenalty ScoreCoverage (%)Vectorization
Ratio (%)
Vector Length
Use (%)
88execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.945.0835.9316.99
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
90execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.25.475015.63
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
57execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.64.065022.92
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
95execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.543.7594.4443.75
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 44 issues (= instructions) costing 1 point each.44
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 2 issues ( = arrays) costing 2 points each4
[SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points.2
Warning! There is no dynamic data for this loop. Some checks can not been performed.0
99execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.602.495.1243.29
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 22 issues (= instructions) costing 1 point each.22
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
[SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 4 issues ( = arrays) costing 2 points each8
[SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 1 issues (= instructions) costing 4 points each.4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
[SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points.2
Warning! There is no dynamic data for this loop. Some checks can not been performed.0
87execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.90.54012.5
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
94execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.40.55018.75
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
82execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.740.2934.4314.45
[SA] Too many paths (70 paths) - Simplify control structure. There are 70 issues ( = paths) costing 1 point each with a malus of 4 points.74
Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option.0
86execPartial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access.180.25010.16
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
105execInefficient vectorization.400.2110045.65
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 8 issues (= instructions) costing 1 point each.8
[SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 3 issues ( = arrays) costing 2 points each6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 1 issues (= instructions) costing 4 points each.4
[SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points.2
Warning! There is no dynamic data for this loop. Some checks can not been performed.0
×