Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (258.02 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3.00 / 3 ] Optimization level option is correctly used
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3.00 / 3 ] Architecture specific option -x SAPPHIRERAPIDS is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.49 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.70%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (92.58%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (97.15%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.55%) lower than cumulative innermost loop coverage (97.15%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (0%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Module | Analysis | Penalty Score | Coverage (%) | Vectorization Ratio (%) | Vector Length Use (%) |
---|---|---|---|---|---|---|
►93 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 9 | 92.58 | 35.93 | 16.99 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 | ||||
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 | ||||
○101 | exec | Partial or unexisting vectorization - No issue detected | 0 | 1.33 | 0 | 12.5 |
►59 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 6 | 1.14 | 50 | 22.92 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 | ||||
►92 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 9 | 0.99 | 0 | 12.5 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 | ||||
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
►85 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 74 | 0.79 | 34.43 | 14.45 |
○ | [SA] Too many paths (70 paths) - Simplify control structure. There are 70 issues ( = paths) costing 1 point each with a malus of 4 points. | 74 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►103 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 4 | 0.7 | 0 | 12.5 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
►91 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 16 | 0.42 | 0 | 9.71 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
►89 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 2 | 0.31 | 50 | 15.63 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 | ||||
►47 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 6 | 0.12 | 30.77 | 13.94 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 | ||||
►60 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 6 | 0.07 | 33.33 | 14.58 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 |