Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 0 / 9 ] Compilation options are not available
Compilation options are an important optimization leverage but ONE-View is not able to analyze them.
[ 4 / 4 ] Application profile is long enough (11.03 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.73%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] CPU activity is good
CPU cores are active 90.54% of time
[ 3 / 4 ] A significant amount of threads are idle (12.93%)
On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Affinity is good (99.46%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (48.91%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (43.58%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 0 / 3 ] Cumulative Outermost/In between loops coverage (49.15%) greater than cumulative innermost loop coverage (43.58%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2032 - exec | Execution Time: 48 % - Vectorization Ratio: 11.25 % - Vector Length Use: 13.20 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 6 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 |
►Vectorization Roadblocks | 10 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2035 - exec | Execution Time: 31 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 2 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
►Loop 1710 - exec | Execution Time: 6 % - Vectorization Ratio: 100.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 0 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
►Loop 1820 - exec | Execution Time: 3 % - Vectorization Ratio: 100.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 0 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
►Loop 2254 - exec | Execution Time: 1 % - Vectorization Ratio: 6.25 % - Vector Length Use: 13.28 % | |
►Loop Computation Issues | 20 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each. | 16 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 2247 - exec | Execution Time: 1 % - Vectorization Ratio: 6.25 % - Vector Length Use: 13.28 % | |
►Loop Computation Issues | 20 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each. | 16 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 12 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 6 issues ( = data accesses) costing 2 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 6 issues ( = data accesses) costing 2 point each. | 12 |
►Loop 1931 - exec | Execution Time: 0 % - Vectorization Ratio: 62.50 % - Vector Length Use: 20.31 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 1 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 1711 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.11 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 7 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 2033 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.94 % | |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 10 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 1821 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.11 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 7 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |