Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (112.58 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.90 / 3 ] Optimization level option is correctly used
[ 2.90 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 2.90 / 3 ] Architecture specific option -x CORE is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.76 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (64.52%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (23.10%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (63.48%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.04%) lower than cumulative innermost loop coverage (63.48%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (2.2%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Module | Analysis | Penalty Score | Coverage (%) | Vectorization Ratio (%) | Vector Length Use (%) |
---|---|---|---|---|---|---|
►748 | exec | Inefficient vectorization. | 2 | 23.1 | 100 | 25 |
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►762 | exec | Inefficient vectorization. | 18 | 10.23 | 100 | 50 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 7 issues ( = arrays) costing 2 points each | 14 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
○1964 | exec | Partial or unexisting vectorization - No issue detected | 0 | 8.24 | 25 | 15.63 |
►1724 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 14 | 6.65 | 54.55 | 15.91 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each. | 10 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
►761 | exec | Inefficient vectorization. | 26 | 5 | 100 | 50 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 10 issues ( = arrays) costing 2 points each | 20 | ||||
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►1227 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 60 | 1.76 | 94.64 | 47.99 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 8 issues (= instructions) costing 4 points each. | 32 | ||||
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 9 issues ( = arrays) costing 2 points each | 18 | ||||
○ | [SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each. | 6 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►252 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 1000 | 1.51 | 0 | 11.16 |
○ | [SA] Too many paths (6561 paths) - Simplify control structure. There are 6561 issues ( = paths) costing 1 point, limited to 1000. | 1000 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►2247 | exec | Inefficient vectorization. | 2 | 1.09 | 100 | 50 |
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►760 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 15 | 0.9 | 38.64 | 22.37 |
○ | [SA] Too many paths (9 paths) - Simplify control structure. There are 9 issues ( = paths) costing 1 point each with a malus of 4 points. | 13 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►750 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 14 | 0.81 | 0 | 11.93 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |