options

kmeans-gcc-O3-soa - 2025-07-07 10:44:27 - MAQAO 2025.1.1

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0
  • run_1
  • run_2
  • run_3
  • run_4
  • run_5
  • run_6
  • run_7

Stylizer  

[ 4 / 4 ] Application profile is long enough (211.41 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12

Stylizer  

[ 4 / 4 ] Application profile is long enough (110.52 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12

Stylizer  

[ 4 / 4 ] Application profile is long enough (59.66 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (100.00%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 353.62% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (88.41%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (86.95%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.21%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.48%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (15.06%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (8.79%) lower than cumulative innermost loop coverage (91.21%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12

Stylizer  

[ 4 / 4 ] Application profile is long enough (34.39 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.98%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 614.65% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (76.85%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (86.85%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.10%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (98.97%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (26.17%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (8.88%) lower than cumulative innermost loop coverage (91.10%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12

Stylizer  

[ 4 / 4 ] Application profile is long enough (21.74 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.95%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 974.84% of observed threads are actually active

[ 2 / 4 ] CPU activity is below 90% (60.95%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (86.84%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.08%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (98.27%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (41.33%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (8.88%) lower than cumulative innermost loop coverage (91.08%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12

Stylizer  

[ 4 / 4 ] Application profile is long enough (15.42 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.91%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 1379.04% of observed threads are actually active

[ 1 / 4 ] CPU activity is below 90% (43.12%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (86.92%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.15%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (97.48%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (58.47%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (8.76%) lower than cumulative innermost loop coverage (91.15%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12

Stylizer  

[ 4 / 4 ] Application profile is long enough (13.31 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.85%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 1598.42% of observed threads are actually active

[ 1 / 4 ] CPU activity is below 90% (33.33%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (86.38%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (90.60%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (97.04%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (67.76%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (9.25%) lower than cumulative innermost loop coverage (90.60%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12

Stylizer  

[ 4 / 4 ] Application profile is long enough (12.26 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.78%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 1743.55% of observed threads are actually active

[ 0 / 4 ] CPU activity is below 90% (27.27%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (86.68%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (90.88%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (96.76%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (73.48%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (8.90%) lower than cumulative innermost loop coverage (90.88%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 4 - kmeans-gcc-O3-soaExecution Time: 86 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 %
Loop 5 - kmeans-gcc-O3-soa+Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.43 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 11 - kmeans-gcc-O3-soa+Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 21.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+12
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
×