Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (321.70 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (100.00%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 99.51% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.51% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (98.90%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (98.90%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (73.42%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.10%) lower than cumulative innermost loop coverage (98.90%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 0 - kmeans-gcc-Ofast | Execution Time: 98 % - Vectorization Ratio: 58.57 % - Vector Length Use: 19.38 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 1 - kmeans-gcc-Ofast | Execution Time: 1 % - Vectorization Ratio: 20.00 % - Vector Length Use: 15.00 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (162.17 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.88%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 137.18% of observed threads are actually active
[ 3 / 4 ] CPU activity is below 90% (86.61%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (97.88%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (97.89%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (73.67%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (1.77%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.99%) lower than cumulative innermost loop coverage (97.89%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 0 - kmeans-gcc-Ofast | Execution Time: 97 % - Vectorization Ratio: 58.57 % - Vector Length Use: 19.38 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 1 - kmeans-gcc-Ofast | Execution Time: 0 % - Vectorization Ratio: 20.00 % - Vector Length Use: 15.00 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (82.28 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (97.10%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 180.97% of observed threads are actually active
[ 3 / 4 ] CPU activity is below 90% (80.43%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (96.11%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (96.12%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (74.04%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.98%) lower than cumulative innermost loop coverage (96.12%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 0 - kmeans-gcc-Ofast | Execution Time: 96 % - Vectorization Ratio: 58.57 % - Vector Length Use: 19.38 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 1 - kmeans-gcc-Ofast | Execution Time: 0 % - Vectorization Ratio: 20.00 % - Vector Length Use: 15.00 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (41.89 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (96.45%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 223.25% of observed threads are actually active
[ 3 / 4 ] CPU activity is below 90% (77.65%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (95.50%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (95.53%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (74.50%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.04%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.92%) lower than cumulative innermost loop coverage (95.53%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 0 - kmeans-gcc-Ofast | Execution Time: 95 % - Vectorization Ratio: 58.57 % - Vector Length Use: 19.38 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 1 - kmeans-gcc-Ofast | Execution Time: 0 % - Vectorization Ratio: 20.00 % - Vector Length Use: 15.00 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (34.17 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.84 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.67%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 239.18% of observed threads are actually active
[ 3 / 4 ] CPU activity is below 90% (77.52%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (88.71%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (93.76%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (75.06%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.04%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.91%) lower than cumulative innermost loop coverage (93.76%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 0 - kmeans-gcc-Ofast | Execution Time: 88 % - Vectorization Ratio: 58.57 % - Vector Length Use: 19.38 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 1 - kmeans-gcc-Ofast | Execution Time: 0 % - Vectorization Ratio: 20.00 % - Vector Length Use: 15.00 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |